We prove a version of Hölder's inequality with a constant for pth roots of symmetric operator spaces of operators affiliated to a semifinite von Neumann algebra factor, and with constant equal to 1 for strongly symmetric operator spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-5,
author = {Ken Dykema and Anna Skripka},
title = {H\"older's inequality for roots of symmetric operator spaces},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {47-54},
zbl = {06497979},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-5}
}
Ken Dykema; Anna Skripka. Hölder's inequality for roots of symmetric operator spaces. Studia Mathematica, Tome 231 (2015) pp. 47-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-5/