Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3,
author = {Hitoshi Tanaka},
title = {The trilinear embedding theorem},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {239-248},
zbl = {1333.42045},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3}
}
Hitoshi Tanaka. The trilinear embedding theorem. Studia Mathematica, Tome 231 (2015) pp. 239-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3/