The trilinear embedding theorem
Hitoshi Tanaka
Studia Mathematica, Tome 231 (2015), p. 239-248 / Harvested from The Polish Digital Mathematics Library

Let σi, i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality QK(Q)i=13|Qfidσi|Ci=13||fi||Lpi(dσi) in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285803
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3,
     author = {Hitoshi Tanaka},
     title = {The trilinear embedding theorem},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {239-248},
     zbl = {1333.42045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3}
}
Hitoshi Tanaka. The trilinear embedding theorem. Studia Mathematica, Tome 231 (2015) pp. 239-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3/