Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3, author = {Hitoshi Tanaka}, title = {The trilinear embedding theorem}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {239-248}, zbl = {1333.42045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3} }
Hitoshi Tanaka. The trilinear embedding theorem. Studia Mathematica, Tome 231 (2015) pp. 239-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-3-3/