Extension operators on balls and on spaces of finite sets
Antonio Avilés ; Witold Marciszewski
Studia Mathematica, Tome 231 (2015), p. 165-182 / Harvested from The Polish Digital Mathematics Library

We study extension operators between spaces of continuous functions on the spaces σ(2X) of subsets of X of cardinality at most n. As an application, we show that if BH is the unit ball of a nonseparable Hilbert space H equipped with the weak topology, then, for any 0 < λ < μ, there is no extension operator T:C(λBH)C(μBH).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285885
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6,
     author = {Antonio Avil\'es and Witold Marciszewski},
     title = {Extension operators on balls and on spaces of finite sets},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {165-182},
     zbl = {1336.46018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6}
}
Antonio Avilés; Witold Marciszewski. Extension operators on balls and on spaces of finite sets. Studia Mathematica, Tome 231 (2015) pp. 165-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6/