We study extension operators between spaces of continuous functions on the spaces of subsets of X of cardinality at most n. As an application, we show that if is the unit ball of a nonseparable Hilbert space H equipped with the weak topology, then, for any 0 < λ < μ, there is no extension operator .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6,
author = {Antonio Avil\'es and Witold Marciszewski},
title = {Extension operators on balls and on spaces of finite sets},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {165-182},
zbl = {1336.46018},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6}
}
Antonio Avilés; Witold Marciszewski. Extension operators on balls and on spaces of finite sets. Studia Mathematica, Tome 231 (2015) pp. 165-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-6/