We show that in a super-reflexive Banach space, the conditionality constants of a quasi-greedy basis ℬ grow at most like for some 0 < ε < 1. This extends results by the third-named author and Wojtaszczyk (2014), where this property was shown for quasi-greedy bases in for 1 < p < ∞. We also give an example of a quasi-greedy basis ℬ in a reflexive Banach space with .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-3, author = {F. Albiac and J. L. Ansorena and G. Garrig\'os and E. Hern\'andez and M. Raja}, title = {Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {133-140}, zbl = {1334.41043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-3} }
F. Albiac; J. L. Ansorena; G. Garrigós; E. Hernández; M. Raja. Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces. Studia Mathematica, Tome 231 (2015) pp. 133-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-2-3/