Euclidean arrangements in Banach spaces
Daniel J. Fresen
Studia Mathematica, Tome 231 (2015), p. 55-76 / Harvested from The Polish Digital Mathematics Library

We study the way in which the Euclidean subspaces of a Banach space fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we introduce is an estimate regarding the convex hull of a convex body in John's position with a Euclidean ball of a given radius, which leads to a new and simplified proof of the randomized isomorphic Dvoretzky theorem. Our results also include a characterization of spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285607
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-4,
     author = {Daniel J. Fresen},
     title = {Euclidean arrangements in Banach spaces},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {55-76},
     zbl = {06446127},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-4}
}
Daniel J. Fresen. Euclidean arrangements in Banach spaces. Studia Mathematica, Tome 231 (2015) pp. 55-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-4/