Zero sums of products of Toeplitz and Hankel operators on the Hardy space
Young Joo Lee
Studia Mathematica, Tome 231 (2015), p. 41-53 / Harvested from The Polish Digital Mathematics Library

On the Hardy space of the unit disk, we consider operators which are finite sums of products of a Toeplitz operator and a Hankel operator. We then give characterizations for such operators to be zero. Our results extend several known results using completely different arguments.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285420
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-3,
     author = {Young Joo Lee},
     title = {Zero sums of products of Toeplitz and Hankel operators on the Hardy space},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {41-53},
     zbl = {06446126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-3}
}
Young Joo Lee. Zero sums of products of Toeplitz and Hankel operators on the Hardy space. Studia Mathematica, Tome 231 (2015) pp. 41-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-3/