Monotone substochastic operators and a new Calderón couple
Karol Leśnik
Studia Mathematica, Tome 231 (2015), p. 21-39 / Harvested from The Polish Digital Mathematics Library

An important result on submajorization, which goes back to Hardy, Littlewood and Pólya, states that b ⪯ a if and only if there is a doubly stochastic matrix A such that b = Aa. We prove that under monotonicity assumptions on the vectors a and b the matrix A may be chosen monotone. This result is then applied to show that (Lp˜,L) is a Calderón couple for 1 ≤ p < ∞, where Lp˜ is the Köthe dual of the Cesàro space Cesp' (or equivalently the down space Lp'). In particular, (L¹˜,L) is a Calderón couple, which gives a positive answer to a question of Sinnamon [Si06] and complements the result of Mastyło and Sinnamon [MS07] that (L,L¹) is a Calderón couple.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285740
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-2,
     author = {Karol Le\'snik},
     title = {Monotone substochastic operators and a new Calder\'on couple},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {21-39},
     zbl = {06446125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-2}
}
Karol Leśnik. Monotone substochastic operators and a new Calderón couple. Studia Mathematica, Tome 231 (2015) pp. 21-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm227-1-2/