The structure of the closed linear span of the Rademacher functions in the Cesàro space is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of if 1 < p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-3-4,
author = {Sergey V. Astashkin and Lech Maligranda},
title = {Structure of Rademacher subspaces in Ces\`aro type spaces},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {259-279},
zbl = {06442707},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-3-4}
}
Sergey V. Astashkin; Lech Maligranda. Structure of Rademacher subspaces in Cesàro type spaces. Studia Mathematica, Tome 231 (2015) pp. 259-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-3-4/