We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2,
author = {Gegham Gevorkyan and Anna Kamont and Karen Keryan and Markus Passenbrunner},
title = {Unconditionality of orthogonal spline systems in H$^1$},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {123-154},
zbl = {1325.42034},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2}
}
Gegham Gevorkyan; Anna Kamont; Karen Keryan; Markus Passenbrunner. Unconditionality of orthogonal spline systems in H¹. Studia Mathematica, Tome 231 (2015) pp. 123-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2/