We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2, author = {Gegham Gevorkyan and Anna Kamont and Karen Keryan and Markus Passenbrunner}, title = {Unconditionality of orthogonal spline systems in H$^1$}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {123-154}, zbl = {1325.42034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2} }
Gegham Gevorkyan; Anna Kamont; Karen Keryan; Markus Passenbrunner. Unconditionality of orthogonal spline systems in H¹. Studia Mathematica, Tome 231 (2015) pp. 123-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-2-2/