Sets of p-multiplicity in locally compact groups
I. G. Todorov ; L. Turowska
Studia Mathematica, Tome 231 (2015), p. 75-93 / Harvested from The Polish Digital Mathematics Library

We initiate the study of sets of p-multiplicity in locally compact groups and their operator versions. We show that a closed subset E of a second countable locally compact group G is a set of p-multiplicity if and only if E*=(s,t):ts-1E is a set of operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation properties for unions and direct products, and prove a p-version of the Stone-von Neumann Theorem.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285439
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-1-4,
     author = {I. G. Todorov and L. Turowska},
     title = {Sets of p-multiplicity in locally compact groups},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {75-93},
     zbl = {1316.47062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-1-4}
}
I. G. Todorov; L. Turowska. Sets of p-multiplicity in locally compact groups. Studia Mathematica, Tome 231 (2015) pp. 75-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm226-1-4/