We show that the space of tracial quantum symmetric states of an arbitrary unital C*-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital C*-algebra free product of A with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when A is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product C*-algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-3-2, author = {Yoann Dabrowski and Kenneth J. Dykema and Kunal Mukherjee}, title = {The simplex of tracial quantum symmetric states}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {203-218}, zbl = {1325.46065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-3-2} }
Yoann Dabrowski; Kenneth J. Dykema; Kunal Mukherjee. The simplex of tracial quantum symmetric states. Studia Mathematica, Tome 223 (2014) pp. 203-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-3-2/