Riesz sequences and arithmetic progressions
Itay Londner ; Alexander Olevskiĭ
Studia Mathematica, Tome 223 (2014), p. 183-191 / Harvested from The Polish Digital Mathematics Library

Given a set of positive measure on the circle and a set Λ of integers, one can ask whether E(Λ):=eλΛiλt is a Riesz sequence in L²(). We consider this question in connection with some arithmetic properties of the set Λ. Improving a result of Bownik and Speegle (2006), we construct a set such that E(Λ) is never a Riesz sequence if Λ contains an arithmetic progression of length N and step =O(N1-ε) with N arbitrarily large. On the other hand, we prove that every set admits a Riesz sequence E(Λ) such that Λ does contain arithmetic progressions of length N and step ℓ = O(N) with N arbitrarily large.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286169
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-2-5,
     author = {Itay Londner and Alexander Olevski\u\i },
     title = {Riesz sequences and arithmetic progressions},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {183-191},
     zbl = {1322.42037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-2-5}
}
Itay Londner; Alexander Olevskiĭ. Riesz sequences and arithmetic progressions. Studia Mathematica, Tome 223 (2014) pp. 183-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm225-2-5/