We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely and C(K,X), where X has the APDP.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4, author = {Elisa R. Santos}, title = {An alternative polynomial Daugavet property}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {265-276}, zbl = {1332.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4} }
Elisa R. Santos. An alternative polynomial Daugavet property. Studia Mathematica, Tome 223 (2014) pp. 265-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4/