An alternative polynomial Daugavet property
Elisa R. Santos
Studia Mathematica, Tome 223 (2014), p. 265-276 / Harvested from The Polish Digital Mathematics Library

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies maxω||Id+ωP||=1+||P||. We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L(μ,X) and C(K,X), where X has the APDP.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285672
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4,
     author = {Elisa R. Santos},
     title = {An alternative polynomial Daugavet property},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {265-276},
     zbl = {1332.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4}
}
Elisa R. Santos. An alternative polynomial Daugavet property. Studia Mathematica, Tome 223 (2014) pp. 265-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-4/