Maximal regularity of second-order evolution equations with infinite delay in Banach spaces
Xianlong Fu ; Ming Li
Studia Mathematica, Tome 223 (2014), p. 199-219 / Harvested from The Polish Digital Mathematics Library

By using Fourier multiplier theorems we characterize the existence and uniqueness of periodic solutions for a class of second-order differential equations with infinite delay. We also establish maximal regularity results for the equations in various spaces. An example is provided to illustrate the applications of the results obtained.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285738
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-2,
     author = {Xianlong Fu and Ming Li},
     title = {Maximal regularity of second-order evolution equations with infinite delay in Banach spaces},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {199-219},
     zbl = {1321.34100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-2}
}
Xianlong Fu; Ming Li. Maximal regularity of second-order evolution equations with infinite delay in Banach spaces. Studia Mathematica, Tome 223 (2014) pp. 199-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-2/