A generalization of the Lyapunov convexity theorem is proved for a vector measure with values in a Banach space with unconditional basis, which is q-concave for some q < ∞ and does not contain any isomorphic copy of l₂.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-1, author = {Anna Novikova}, title = {Lyapunov theorem for q-concave Banach spaces}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {195-198}, zbl = {1319.46032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-1} }
Anna Novikova. Lyapunov theorem for q-concave Banach spaces. Studia Mathematica, Tome 223 (2014) pp. 195-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-3-1/