Hessian determinants as elements of dual Sobolev spaces
Teresa Radice
Studia Mathematica, Tome 223 (2014), p. 183-190 / Harvested from The Polish Digital Mathematics Library

In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285542
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6,
     author = {Teresa Radice},
     title = {Hessian determinants as elements of dual Sobolev spaces},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {183-190},
     zbl = {1326.46030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6}
}
Teresa Radice. Hessian determinants as elements of dual Sobolev spaces. Studia Mathematica, Tome 223 (2014) pp. 183-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6/