In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6, author = {Teresa Radice}, title = {Hessian determinants as elements of dual Sobolev spaces}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {183-190}, zbl = {1326.46030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6} }
Teresa Radice. Hessian determinants as elements of dual Sobolev spaces. Studia Mathematica, Tome 223 (2014) pp. 183-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-6/