We consider a complete connected noncompact Riemannian manifold M with bounded geometry and spectral gap. We prove that the imaginary powers of the Laplacian and the Riesz transform are bounded from the Hardy space X¹(M), introduced in previous work of the authors, to L¹(M).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4, author = {Giancarlo Mauceri and Stefano Meda and Maria Vallarino}, title = {Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {153-168}, zbl = {1308.30062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4} }
Giancarlo Mauceri; Stefano Meda; Maria Vallarino. Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds. Studia Mathematica, Tome 223 (2014) pp. 153-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4/