Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds
Giancarlo Mauceri ; Stefano Meda ; Maria Vallarino
Studia Mathematica, Tome 223 (2014), p. 153-168 / Harvested from The Polish Digital Mathematics Library

We consider a complete connected noncompact Riemannian manifold M with bounded geometry and spectral gap. We prove that the imaginary powers of the Laplacian and the Riesz transform are bounded from the Hardy space X¹(M), introduced in previous work of the authors, to L¹(M).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285577
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4,
     author = {Giancarlo Mauceri and Stefano Meda and Maria Vallarino},
     title = {Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {153-168},
     zbl = {1308.30062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4}
}
Giancarlo Mauceri; Stefano Meda; Maria Vallarino. Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds. Studia Mathematica, Tome 223 (2014) pp. 153-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm224-2-4/