Weyl numbers versus Z-Weyl numbers
Bernd Carl ; Andreas Defant ; Doris Planer
Studia Mathematica, Tome 223 (2014), p. 233-250 / Harvested from The Polish Digital Mathematics Library

Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue distribution of operators between Banach spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286204
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-4,
     author = {Bernd Carl and Andreas Defant and Doris Planer},
     title = {Weyl numbers versus Z-Weyl numbers},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {233-250},
     zbl = {1325.47043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-4}
}
Bernd Carl; Andreas Defant; Doris Planer. Weyl numbers versus Z-Weyl numbers. Studia Mathematica, Tome 223 (2014) pp. 233-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-4/