On the randomized complexity of Banach space valued integration
Stefan Heinrich ; Aicke Hinrichs
Studia Mathematica, Tome 223 (2014), p. 205-215 / Harvested from The Polish Digital Mathematics Library

We study the complexity of Banach space valued integration in the randomized setting. We are concerned with r times continuously differentiable functions on the d-dimensional unit cube Q, with values in a Banach space X, and investigate the relation of the optimal convergence rate to the geometry of X. It turns out that the nth minimal errors are bounded by cn-r/d-1+1/p if and only if X is of equal norm type p.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286220
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-2,
     author = {Stefan Heinrich and Aicke Hinrichs},
     title = {On the randomized complexity of Banach space valued integration},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {205-215},
     zbl = {1310.65026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-2}
}
Stefan Heinrich; Aicke Hinrichs. On the randomized complexity of Banach space valued integration. Studia Mathematica, Tome 223 (2014) pp. 205-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-2/