This paper deals with Besov spaces of logarithmic smoothness formed by periodic functions. We study embeddings of into Lorentz-Zygmund spaces . Our techniques rely on the approximation structure of , Nikol’skiĭ type inequalities, extrapolation properties of and interpolation.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-1, author = {Fernando Cobos and \'Oscar Dom\'\i nguez}, title = {Embeddings of Besov spaces of logarithmic smoothness}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {193-204}, zbl = {1325.46039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-1} }
Fernando Cobos; Óscar Domínguez. Embeddings of Besov spaces of logarithmic smoothness. Studia Mathematica, Tome 223 (2014) pp. 193-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-3-1/