We prove that for s < 0, s-concave measures on ℝⁿ exhibit thin-shell concentration similar to the log-concave case. This leads to a Berry-Esseen type estimate for most of their one-dimensional marginal distributions. We also establish sharp reverse Hölder inequalities for s-concave measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2, author = {Matthieu Fradelizi and Olivier Gu\'edon and Alain Pajor}, title = {Thin-shell concentration for convex measures}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {123-148}, zbl = {1317.60017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2} }
Matthieu Fradelizi; Olivier Guédon; Alain Pajor. Thin-shell concentration for convex measures. Studia Mathematica, Tome 223 (2014) pp. 123-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2/