Thin-shell concentration for convex measures
Matthieu Fradelizi ; Olivier Guédon ; Alain Pajor
Studia Mathematica, Tome 223 (2014), p. 123-148 / Harvested from The Polish Digital Mathematics Library

We prove that for s < 0, s-concave measures on ℝⁿ exhibit thin-shell concentration similar to the log-concave case. This leads to a Berry-Esseen type estimate for most of their one-dimensional marginal distributions. We also establish sharp reverse Hölder inequalities for s-concave measures.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285659
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2,
     author = {Matthieu Fradelizi and Olivier Gu\'edon and Alain Pajor},
     title = {Thin-shell concentration for convex measures},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {123-148},
     zbl = {1317.60017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2}
}
Matthieu Fradelizi; Olivier Guédon; Alain Pajor. Thin-shell concentration for convex measures. Studia Mathematica, Tome 223 (2014) pp. 123-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-2-2/