We establish the embedding of the critical Sobolev-Lorentz-Zygmund space into the generalized Morrey space with an optimal Young function Φ. As an application, we obtain the almost Lipschitz continuity for functions in . O’Neil’s inequality and its reverse play an essential role in the proofs of the main theorems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5,
author = {Hidemitsu Wadade},
title = {Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces},
journal = {Studia Mathematica},
volume = {223},
year = {2014},
pages = {77-95},
zbl = {1317.46024},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5}
}
Hidemitsu Wadade. Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces. Studia Mathematica, Tome 223 (2014) pp. 77-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5/