We establish the embedding of the critical Sobolev-Lorentz-Zygmund space into the generalized Morrey space with an optimal Young function Φ. As an application, we obtain the almost Lipschitz continuity for functions in . O’Neil’s inequality and its reverse play an essential role in the proofs of the main theorems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5, author = {Hidemitsu Wadade}, title = {Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {77-95}, zbl = {1317.46024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5} }
Hidemitsu Wadade. Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces. Studia Mathematica, Tome 223 (2014) pp. 77-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-5/