Given a strongly continuous semigroup on a Banach space X with generator A and an element f ∈ D(A²) satisfying and for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ||Af|| in terms of ||f|| and ||A²f||. This inequality improves on the usual Landau inequality that holds in the case ω = 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-2, author = {Gerd Herzog and Peer Christian Kunstmann}, title = {A local Landau type inequality for semigroup orbits}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {19-26}, zbl = {1302.47065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-2} }
Gerd Herzog; Peer Christian Kunstmann. A local Landau type inequality for semigroup orbits. Studia Mathematica, Tome 223 (2014) pp. 19-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm223-1-2/