Dual spaces to Orlicz-Lorentz spaces
Anna Kamińska ; Karol Leśnik ; Yves Raynaud
Studia Mathematica, Tome 223 (2014), p. 229-261 / Harvested from The Polish Digital Mathematics Library

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λφ,w or the sequence space λφ,w, equipped with either the Luxemburg or Amemiya norms. The first description is via the modular infφ(f*/|g|)|g|:gw, where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular Iφ((f*)/w)w,where (f*)⁰ is Halperin’s level function of f* with respect to w. That these two descriptions are equivalent results from the identity infψ(f*/|g|)|g|:gw=Iψ((f*)/w)w, valid for any measurable function f and any Orlicz function ψ. An analogous identity and dual representations are also presented for sequence spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286639
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-3-3,
     author = {Anna Kami\'nska and Karol Le\'snik and Yves Raynaud},
     title = {Dual spaces to Orlicz-Lorentz spaces},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {229-261},
     zbl = {1322.46021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-3-3}
}
Anna Kamińska; Karol Leśnik; Yves Raynaud. Dual spaces to Orlicz-Lorentz spaces. Studia Mathematica, Tome 223 (2014) pp. 229-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-3-3/