We establish the following sharp local estimate for the family of Riesz transforms on . For any Borel subset A of and any function , , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, , 1 < p < 2, and , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1, author = {Adam Os\k ekowski}, title = {Sharp inequalities for Riesz transforms}, journal = {Studia Mathematica}, volume = {223}, year = {2014}, pages = {1-18}, zbl = {1305.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1} }
Adam Osękowski. Sharp inequalities for Riesz transforms. Studia Mathematica, Tome 223 (2014) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1/