Sharp inequalities for Riesz transforms
Adam Osękowski
Studia Mathematica, Tome 223 (2014), p. 1-18 / Harvested from The Polish Digital Mathematics Library

We establish the following sharp local estimate for the family Rjj=1d of Riesz transforms on d. For any Borel subset A of d and any function f:d, A|Rjf(x)|dxCp||f||Lp(d)|A|1/q, 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, Cp=[2q+2Γ(q+1)/πq+1k=0(-1)k/(2k+1)q+1]1/q, 1 < p < 2, and Cp=[4Γ(q+1)/πqk=01/(2k+1)q]1/q, 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285404
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1,
     author = {Adam Os\k ekowski},
     title = {Sharp inequalities for Riesz transforms},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {1-18},
     zbl = {1305.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1}
}
Adam Osękowski. Sharp inequalities for Riesz transforms. Studia Mathematica, Tome 223 (2014) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm222-1-1/