The Daugavet property and translation-invariant subspaces
Simon Lücking
Studia Mathematica, Tome 223 (2014), p. 269-291 / Harvested from The Polish Digital Mathematics Library

Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form CΛ(G) or L¹Λ(G) and which quotients of the form C(G)/CΛ(G) or L¹(G)/L¹Λ(G) have the Daugavet property. We show that CΛ(G) is a rich subspace of C(G) if and only if ΓΛ-1 is a semi-Riesz set. If L¹Λ(G) is a rich subspace of L¹(G), then CΛ(G) is a rich subspace of C(G) as well. Concerning quotients, we prove that C(G)/CΛ(G) has the Daugavet property if Λ is a Rosenthal set, and that L¹Λ(G) is a poor subspace of L¹(G) if Λ is a nicely placed Riesz set.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285905
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-3-5,
     author = {Simon L\"ucking},
     title = {The Daugavet property and translation-invariant subspaces},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {269-291},
     zbl = {1312.46017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-3-5}
}
Simon Lücking. The Daugavet property and translation-invariant subspaces. Studia Mathematica, Tome 223 (2014) pp. 269-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm221-3-5/