Convergence of Taylor series in Fock spaces
Haiying Li
Studia Mathematica, Tome 223 (2014), p. 179-186 / Harvested from The Polish Digital Mathematics Library

It is well known that the Taylor series of every function in the Fock space Fαp converges in norm when 1 < p < ∞. It is also known that this is no longer true when p = 1. In this note we consider the case 0 < p < 1 and show that the Taylor series of functions in Fαp do not necessarily converge “in norm”.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285390
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-6,
     author = {Haiying Li},
     title = {Convergence of Taylor series in Fock spaces},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {179-186},
     zbl = {1293.30091},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-6}
}
Haiying Li. Convergence of Taylor series in Fock spaces. Studia Mathematica, Tome 223 (2014) pp. 179-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-6/