A new characteristic property of Mittag-Leffler functions and fractional cosine functions
Zhan-Dong Mei ; Ji-Gen Peng ; Jun-Xiong Jia
Studia Mathematica, Tome 223 (2014), p. 119-140 / Harvested from The Polish Digital Mathematics Library

A new characteristic property of the Mittag-Leffler function Eα(atα) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:285631
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-2,
     author = {Zhan-Dong Mei and Ji-Gen Peng and Jun-Xiong Jia},
     title = {A new characteristic property of Mittag-Leffler functions and fractional cosine functions},
     journal = {Studia Mathematica},
     volume = {223},
     year = {2014},
     pages = {119-140},
     zbl = {1297.33015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-2}
}
Zhan-Dong Mei; Ji-Gen Peng; Jun-Xiong Jia. A new characteristic property of Mittag-Leffler functions and fractional cosine functions. Studia Mathematica, Tome 223 (2014) pp. 119-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm220-2-2/