On the distribution of random variables corresponding to Musielak-Orlicz norms
David Alonso-Gutiérrez ; Sören Christensen ; Markus Passenbrunner ; Joscha Prochno
Studia Mathematica, Tome 215 (2013), p. 269-287 / Harvested from The Polish Digital Mathematics Library

Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then 1/Cp||x||M||(xiXi)i=1||pCp||x||M, where Cp is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the p-norm by an arbitrary N-norm. This complements some deep results obtained by Gordon, Litvak, Schütt, and Werner [Ann. Prob. 30 (2002)]. We also prove, in the spirit of that paper, a result which is of a simpler form and easier to apply. All results are true in the more general setting of Musielak-Orlicz spaces.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285411
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-6,
     author = {David Alonso-Guti\'errez and S\"oren Christensen and Markus Passenbrunner and Joscha Prochno},
     title = {On the distribution of random variables corresponding to Musielak-Orlicz norms},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {269-287},
     zbl = {1318.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-6}
}
David Alonso-Gutiérrez; Sören Christensen; Markus Passenbrunner; Joscha Prochno. On the distribution of random variables corresponding to Musielak-Orlicz norms. Studia Mathematica, Tome 215 (2013) pp. 269-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-6/