Mixed Ap-A estimates with one supremum
Andrei K. Lerner ; Kabe Moen
Studia Mathematica, Tome 215 (2013), p. 247-267 / Harvested from The Polish Digital Mathematics Library

We establish several mixed Ap-A bounds for Calderón-Zygmund operators that only involve one supremum. We address both cases when the A part of the constant is measured using the exponential-logarithmic definition and using the Fujii-Wilson definition. In particular, we answer a question of the first author and provide an answer, up to a logarithmic factor, to a conjecture of Hytönen and Lacey. Moreover, we give an example to show that our bounds with the logarithmic factors can be arbitrarily smaller than the previously known bounds (both with one supremum and two suprema).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285779
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-5,
     author = {Andrei K. Lerner and Kabe Moen},
     title = {Mixed $A\_{p}-A\_{$\infty$}$ estimates with one supremum},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {247-267},
     zbl = {1317.42015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-5}
}
Andrei K. Lerner; Kabe Moen. Mixed $A_{p}-A_{∞}$ estimates with one supremum. Studia Mathematica, Tome 215 (2013) pp. 247-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-3-5/