We construct an infinite uniform Frostman Blaschke product B such that B ∘ B is also a uniform Frostman Blaschke product. We also show that the set of uniform Frostman Blaschke products is open in the set of inner functions with the uniform norm.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-7, author = {John R. Akeroyd and Pamela Gorkin}, title = {On the composition of Frostman Blaschke products}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {177-191}, zbl = {1291.30259}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-7} }
John R. Akeroyd; Pamela Gorkin. On the composition of Frostman Blaschke products. Studia Mathematica, Tome 215 (2013) pp. 177-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-7/