Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space
Xing-Tang Dong ; Ze-Hua Zhou
Studia Mathematica, Tome 215 (2013), p. 163-175 / Harvested from The Polish Digital Mathematics Library

We present here a quite unexpected result: If the product of two quasihomogeneous Toeplitz operators TfTg on the harmonic Bergman space is equal to a Toeplitz operator Th, then the product TgTf is also the Toeplitz operator Th, and hence Tf commutes with Tg. From this we give necessary and sufficient conditions for the product of two Toeplitz operators, one quasihomogeneous and the other monomial, to be a Toeplitz operator.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285448
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6,
     author = {Xing-Tang Dong and Ze-Hua Zhou},
     title = {Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {163-175},
     zbl = {1310.47041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6}
}
Xing-Tang Dong; Ze-Hua Zhou. Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space. Studia Mathematica, Tome 215 (2013) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6/