We present here a quite unexpected result: If the product of two quasihomogeneous Toeplitz operators on the harmonic Bergman space is equal to a Toeplitz operator , then the product is also the Toeplitz operator , and hence commutes with . From this we give necessary and sufficient conditions for the product of two Toeplitz operators, one quasihomogeneous and the other monomial, to be a Toeplitz operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6,
author = {Xing-Tang Dong and Ze-Hua Zhou},
title = {Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space},
journal = {Studia Mathematica},
volume = {215},
year = {2013},
pages = {163-175},
zbl = {1310.47041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6}
}
Xing-Tang Dong; Ze-Hua Zhou. Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space. Studia Mathematica, Tome 215 (2013) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6/