We present here a quite unexpected result: If the product of two quasihomogeneous Toeplitz operators on the harmonic Bergman space is equal to a Toeplitz operator , then the product is also the Toeplitz operator , and hence commutes with . From this we give necessary and sufficient conditions for the product of two Toeplitz operators, one quasihomogeneous and the other monomial, to be a Toeplitz operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6, author = {Xing-Tang Dong and Ze-Hua Zhou}, title = {Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {163-175}, zbl = {1310.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6} }
Xing-Tang Dong; Ze-Hua Zhou. Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space. Studia Mathematica, Tome 215 (2013) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-6/