Lineability and spaceability on vector-measure spaces
Giuseppina Barbieri ; Francisco J. García-Pacheco ; Daniele Puglisi
Studia Mathematica, Tome 215 (2013), p. 155-161 / Harvested from The Polish Digital Mathematics Library

It is proved that if X is infinite-dimensional, then there exists an infinite-dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that ca(,λ,X)Mσ, the measures with non-σ-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear Algebra Appl. 428 (2008)].

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285790
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-5,
     author = {Giuseppina Barbieri and Francisco J. Garc\'\i a-Pacheco and Daniele Puglisi},
     title = {Lineability and spaceability on vector-measure spaces},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {155-161},
     zbl = {1294.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-5}
}
Giuseppina Barbieri; Francisco J. García-Pacheco; Daniele Puglisi. Lineability and spaceability on vector-measure spaces. Studia Mathematica, Tome 215 (2013) pp. 155-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-2-5/