The evolution and Poisson kernels on nilpotent meta-abelian groups
Richard Penney ; Roman Urban
Studia Mathematica, Tome 215 (2013), p. 69-96 / Harvested from The Polish Digital Mathematics Library

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k, k>1. We consider a class of second order left-invariant differential operators on S of the form α=La+Δα, where αk, and for each ak,La is left-invariant second order differential operator on N and Δα=Δ-α,, where Δ is the usual Laplacian on k. Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively) we obtain an upper estimate for the transition probabilities of the evolution on N generated by Lσ(t), where σ is a continuous function from [0,∞) to k. We also give an upper bound for the Poisson kernel for α.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285719
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-1-4,
     author = {Richard Penney and Roman Urban},
     title = {The evolution and Poisson kernels on nilpotent meta-abelian groups},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {69-96},
     zbl = {1294.43004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-1-4}
}
Richard Penney; Roman Urban. The evolution and Poisson kernels on nilpotent meta-abelian groups. Studia Mathematica, Tome 215 (2013) pp. 69-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm219-1-4/