Let L be a norm closed left ideal of a C*-algebra A. Then the left quotient A/L is a left A-module. In this paper, we shall implement Tomita’s idea about representing elements of A as left multiplications: . A complete characterization of bounded endomorphisms of the A-module A/L is given. The double commutant of in B(A/L) is described. Density theorems of von Neumann and Kaplansky type are obtained. Finally, a comprehensive study of relative multipliers of A is carried out.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-3-1, author = {Lawrence G. Brown and Ngai-Ching Wong}, title = {Left quotients of a C*-algebra, III: Operators on left quotients}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {189-217}, zbl = {1294.46046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-3-1} }
Lawrence G. Brown; Ngai-Ching Wong. Left quotients of a C*-algebra, III: Operators on left quotients. Studia Mathematica, Tome 215 (2013) pp. 189-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-3-1/