We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3, author = {Antonio J. Guirao and Olena Kozhushkina}, title = {The Bishop-Phelps-Bollobas property for numerical radius in l1(C)}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {41-54}, zbl = {1285.47008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3} }
Antonio J. Guirao; Olena Kozhushkina. The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ). Studia Mathematica, Tome 215 (2013) pp. 41-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3/