The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ)
Antonio J. Guirao ; Olena Kozhushkina
Studia Mathematica, Tome 215 (2013), p. 41-54 / Harvested from The Polish Digital Mathematics Library

We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285747
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3,
     author = {Antonio J. Guirao and Olena Kozhushkina},
     title = {The Bishop-Phelps-Bollobas property for numerical radius in l1(C)},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {41-54},
     zbl = {1285.47008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3}
}
Antonio J. Guirao; Olena Kozhushkina. The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ). Studia Mathematica, Tome 215 (2013) pp. 41-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-3/