The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-2, author = {Omer Friedland and Yosef Yomdin}, title = {An observation on the Tur\'an-Nazarov inequality}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {27-39}, zbl = {1292.26039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-2} }
Omer Friedland; Yosef Yomdin. An observation on the Turán-Nazarov inequality. Studia Mathematica, Tome 215 (2013) pp. 27-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-2/