Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality for functions in the domain of the Dirichlet form on nested fractals. We then study the Hajłasz-Sobolev spaces on nested fractals. In particular, we describe how the "weak"-type gradient on nested fractals relates to the upper gradient defined in the context of general metric spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-1, author = {Katarzyna Pietruska-Pa\l uba and Andrzej St\'os}, title = {Poincar\'e inequality and Haj\l asz-Sobolev spaces on nested fractals}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {1-26}, zbl = {1300.46030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-1} }
Katarzyna Pietruska-Pałuba; Andrzej Stós. Poincaré inequality and Hajłasz-Sobolev spaces on nested fractals. Studia Mathematica, Tome 215 (2013) pp. 1-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-1-1/