Outers for noncommutative Hp revisited
David P. Blecher ; Louis E. Labuschagne
Studia Mathematica, Tome 215 (2013), p. 265-287 / Harvested from The Polish Digital Mathematics Library

We continue our study of outer elements of the noncommutative Hp spaces associated with Arveson’s subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in Hp actually satisfy the stronger condition that there exist aₙ ∈ A with haₙ ∈ Ball(A) and haₙ → 1 in p-norm.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285923
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-3-4,
     author = {David P. Blecher and Louis E. Labuschagne},
     title = {Outers for noncommutative $H^{p}$ revisited},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {265-287},
     zbl = {1290.46054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-3-4}
}
David P. Blecher; Louis E. Labuschagne. Outers for noncommutative $H^{p}$ revisited. Studia Mathematica, Tome 215 (2013) pp. 265-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-3-4/