In this note we establish a vector-valued version of Beurling’s theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-5, author = {Jaydeb Sarkar and Amol Sasane and Brett D. Wick}, title = {Doubly commuting submodules of the Hardy module over polydiscs}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {179-192}, zbl = {1290.46047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-5} }
Jaydeb Sarkar; Amol Sasane; Brett D. Wick. Doubly commuting submodules of the Hardy module over polydiscs. Studia Mathematica, Tome 215 (2013) pp. 179-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-5/