How far is C(ω) from the other C(K) spaces?
Leandro Candido ; Elói Medina Galego
Studia Mathematica, Tome 215 (2013), p. 123-138 / Harvested from The Polish Digital Mathematics Library

Let us denote by C(α) the classical Banach space C(K) when K is the interval of ordinals [1,α] endowed with the order topology. In the present paper, we give an answer to a 1960 Bessaga and Pełczyński question by providing tight bounds for the Banach-Mazur distance between C(ω) and any other C(K) space which is isomorphic to it. More precisely, we obtain lower bounds L(n,k) and upper bounds U(n,k) on d(C(ω),C(ωⁿk)) such that U(n,k) - L(n,k) < 2 for all 1 ≤ n, k < ω.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285763
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-2,
     author = {Leandro Candido and El\'oi Medina Galego},
     title = {How far is C($\omega$) from the other C(K) spaces?},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {123-138},
     zbl = {1288.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-2}
}
Leandro Candido; Elói Medina Galego. How far is C(ω) from the other C(K) spaces?. Studia Mathematica, Tome 215 (2013) pp. 123-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-2-2/