Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-1-3, author = {Alessio Martini and Detlef M\"uller}, title = {$L^{p}$ spectral multipliers on the free group $N\_{3,2}$ }, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {41-55}, zbl = {1285.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-1-3} }
Alessio Martini; Detlef Müller. $L^{p}$ spectral multipliers on the free group $N_{3,2}$ . Studia Mathematica, Tome 215 (2013) pp. 41-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm217-1-3/