We give sufficient conditions on an operator space E and on a semigroup of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic semigroup ( on the vector valued noncommutative -space . Moreover, we give applications to the functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5, author = {C\'edric Arhancet}, title = {Analytic semigroups on vector valued noncommutative $L^{p}$-spaces}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {271-290}, zbl = {1283.46044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5} }
Cédric Arhancet. Analytic semigroups on vector valued noncommutative $L^{p}$-spaces. Studia Mathematica, Tome 215 (2013) pp. 271-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5/