We give sufficient conditions on an operator space E and on a semigroup of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic semigroup ( on the vector valued noncommutative -space . Moreover, we give applications to the functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5,
author = {C\'edric Arhancet},
title = {Analytic semigroups on vector valued noncommutative $L^{p}$-spaces},
journal = {Studia Mathematica},
volume = {215},
year = {2013},
pages = {271-290},
zbl = {1283.46044},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5}
}
Cédric Arhancet. Analytic semigroups on vector valued noncommutative $L^{p}$-spaces. Studia Mathematica, Tome 215 (2013) pp. 271-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-3-5/