2-summing multiplication operators
Dumitru Popa
Studia Mathematica, Tome 215 (2013), p. 77-96 / Harvested from The Polish Digital Mathematics Library

Let 1 ≤ p < ∞, =(X)n be a sequence of Banach spaces and lp() the coresponding vector valued sequence space. Let =(X)n, =(Y)n be two sequences of Banach spaces, =(V)n, Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator M:lp()lq() by M((x)n):=(V(x))n. We give necessary and sufficient conditions for M to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285383
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6,
     author = {Dumitru Popa},
     title = {2-summing multiplication operators},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {77-96},
     zbl = {1288.47022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6}
}
Dumitru Popa. 2-summing multiplication operators. Studia Mathematica, Tome 215 (2013) pp. 77-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6/