Let 1 ≤ p < ∞, be a sequence of Banach spaces and the coresponding vector valued sequence space. Let , be two sequences of Banach spaces, , Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator by . We give necessary and sufficient conditions for to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6, author = {Dumitru Popa}, title = {2-summing multiplication operators}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {77-96}, zbl = {1288.47022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6} }
Dumitru Popa. 2-summing multiplication operators. Studia Mathematica, Tome 215 (2013) pp. 77-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-1-6/