Pisier's inequality revisited
Tuomas Hytönen ; Assaf Naor
Studia Mathematica, Tome 215 (2013), p. 221-235 / Harvested from The Polish Digital Mathematics Library

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies -1,1||j=1njfj(ε)||pdμ(ε)p-1,1-1,1||j=1nδjΔfj(ε)||pdμ(ε)dμ(δ), where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and jj=1n and Δ=j=1nj are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p(X), we show that p(X)k=1n1/k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special case fj=Δ-1jf for some f: -1,1ⁿ → X. We show that supnp(X)< if either the dual X* is a UMD⁺ Banach space, or for some θ ∈ (0,1) we have X=[H,Y]θ, where H is a Hilbert space and Y is an arbitrary Banach space. It follows that supnp(X)< if X is a Banach lattice of nontrivial type.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285609
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-3-2,
     author = {Tuomas Hyt\"onen and Assaf Naor},
     title = {Pisier's inequality revisited},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {221-235},
     zbl = {1285.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-3-2}
}
Tuomas Hytönen; Assaf Naor. Pisier's inequality revisited. Studia Mathematica, Tome 215 (2013) pp. 221-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-3-2/