Tensor product of left n-invertible operators
B. P. Duggal ; Vladimir Müller
Studia Mathematica, Tome 215 (2013), p. 113-125 / Harvested from The Polish Digital Mathematics Library

A Banach space operator T ∈ has a left m-inverse (resp., an essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ (resp., an operator S ∈ and a compact operator K ∈ ) such that i=0m(-1)imiSm-iTm-i=0 (resp., i=0m(-1)imiTm-iSm-i=K). If Ti is left mi-invertible (resp., essentially left mi-invertible), then the tensor product T₁ ⊗ T₂ is left (m₁ + m₂-1)-invertible (resp., essentially left (m₁ + m₂-1)-invertible). Furthermore, if T₁ is strictly left m-invertible (resp., strictly essentially left m-invertible), then T₁ ⊗ T₂ is: (i) left (m + n - 1)-invertible (resp., essentially left (m + n - 1)-invertible) if and only if T₂ is left n-invertible (resp., essentially left n-invertible); (ii) strictly left (m + n - 1)-invertible (resp., strictly essentially left (m + n - 1)-invertible) if and only if T₂ is strictly left n-invertible (resp., strictly essentially left n-invertible).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285583
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2,
     author = {B. P. Duggal and Vladimir M\"uller},
     title = {Tensor product of left n-invertible operators},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {113-125},
     zbl = {1273.47037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2}
}
B. P. Duggal; Vladimir Müller. Tensor product of left n-invertible operators. Studia Mathematica, Tome 215 (2013) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2/