A Banach space operator T ∈ has a left m-inverse (resp., an essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ (resp., an operator S ∈ and a compact operator K ∈ ) such that (resp., ). If is left -invertible (resp., essentially left -invertible), then the tensor product T₁ ⊗ T₂ is left (m₁ + m₂-1)-invertible (resp., essentially left (m₁ + m₂-1)-invertible). Furthermore, if T₁ is strictly left m-invertible (resp., strictly essentially left m-invertible), then T₁ ⊗ T₂ is: (i) left (m + n - 1)-invertible (resp., essentially left (m + n - 1)-invertible) if and only if T₂ is left n-invertible (resp., essentially left n-invertible); (ii) strictly left (m + n - 1)-invertible (resp., strictly essentially left (m + n - 1)-invertible) if and only if T₂ is strictly left n-invertible (resp., strictly essentially left n-invertible).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2, author = {B. P. Duggal and Vladimir M\"uller}, title = {Tensor product of left n-invertible operators}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {113-125}, zbl = {1273.47037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2} }
B. P. Duggal; Vladimir Müller. Tensor product of left n-invertible operators. Studia Mathematica, Tome 215 (2013) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-2/