Segal algebras, approximate identities and norm irregularity in C₀(X,A)
Jussi Mattas
Studia Mathematica, Tome 215 (2013), p. 99-112 / Harvested from The Polish Digital Mathematics Library

We study three closely related concepts in the context of the Banach algebra C₀(X,A). We show that, to a certain extent, Segal extensions, norm irregularity and the existence of approximate identities in C₀(X,A) can be deduced from the corresponding features of A and vice versa. Extensive use is made of the multiplier norm and the tensor product representation of C₀(X,A).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285859
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-1,
     author = {Jussi Mattas},
     title = {Segal algebras, approximate identities and norm irregularity in C0(X,A)},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {99-112},
     zbl = {1285.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-1}
}
Jussi Mattas. Segal algebras, approximate identities and norm irregularity in C₀(X,A). Studia Mathematica, Tome 215 (2013) pp. 99-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm215-2-1/