Multiplicative maps that are close to an automorphism on algebras of linear transformations
L. W. Marcoux ; H. Radjavi ; A. R. Sourour
Studia Mathematica, Tome 215 (2013), p. 279-296 / Harvested from The Polish Digital Mathematics Library

Let be a complex, separable Hilbert space of finite or infinite dimension, and let ℬ() be the algebra of all bounded operators on . It is shown that if φ: ℬ() → ℬ() is a multiplicative map(not assumed linear) and if φ is sufficiently close to a linear automorphism of ℬ() in some uniform sense, then it is actually an automorphism; as such, there is an invertible operator S in ℬ() such that φ(A)=S-1AS for all A in ℬ(). When is finite-dimensional, similar results are obtained with the mere assumption that there exists a linear functional f on ℬ() so that f ∘ φ is close to f ∘ μ for some automorphism μ of ℬ().

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286135
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-3-6,
     author = {L. W. Marcoux and H. Radjavi and A. R. Sourour},
     title = {Multiplicative maps that are close to an automorphism on algebras of linear transformations},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {279-296},
     zbl = {1279.15007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-3-6}
}
L. W. Marcoux; H. Radjavi; A. R. Sourour. Multiplicative maps that are close to an automorphism on algebras of linear transformations. Studia Mathematica, Tome 215 (2013) pp. 279-296. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-3-6/