Lower bounds for norms of products of polynomials on Lp spaces
Daniel Carando ; Damián Pinasco ; Jorge Tomás Rodríguez
Studia Mathematica, Tome 215 (2013), p. 157-166 / Harvested from The Polish Digital Mathematics Library

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on Lp(μ), whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p. For p > 2 we present some estimates on the constants involved.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285530
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4,
     author = {Daniel Carando and Dami\'an Pinasco and Jorge Tom\'as Rodr\'\i guez},
     title = {Lower bounds for norms of products of polynomials on $L\_{p}$ spaces},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {157-166},
     zbl = {1271.32002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4}
}
Daniel Carando; Damián Pinasco; Jorge Tomás Rodríguez. Lower bounds for norms of products of polynomials on $L_{p}$ spaces. Studia Mathematica, Tome 215 (2013) pp. 157-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4/