For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes . For p > 2 we present some estimates on the constants involved.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4,
author = {Daniel Carando and Dami\'an Pinasco and Jorge Tom\'as Rodr\'\i guez},
title = {Lower bounds for norms of products of polynomials on $L\_{p}$ spaces},
journal = {Studia Mathematica},
volume = {215},
year = {2013},
pages = {157-166},
zbl = {1271.32002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4}
}
Daniel Carando; Damián Pinasco; Jorge Tomás Rodríguez. Lower bounds for norms of products of polynomials on $L_{p}$ spaces. Studia Mathematica, Tome 215 (2013) pp. 157-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-4/