Weak compactness of solutions for fourth order elliptic systems with critical growth
Paweł Goldstein ; Paweł Strzelecki ; Anna Zatorska-Goldstein
Studia Mathematica, Tome 215 (2013), p. 137-156 / Harvested from The Polish Digital Mathematics Library

We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285633
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-3,
     author = {Pawe\l\ Goldstein and Pawe\l\ Strzelecki and Anna Zatorska-Goldstein},
     title = {Weak compactness of solutions for fourth order elliptic systems with critical growth},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {137-156},
     zbl = {1277.35163},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-3}
}
Paweł Goldstein; Paweł Strzelecki; Anna Zatorska-Goldstein. Weak compactness of solutions for fourth order elliptic systems with critical growth. Studia Mathematica, Tome 215 (2013) pp. 137-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-3/